Microscopic R2* mapping of reduced brain iron in the Belgrade rat.

نویسندگان

  • Holly A Zywicke
  • Peter van Gelderen
  • James R Connor
  • Joseph R Burdo
  • Michael D Garrick
  • Kevin G Dolan
  • Joseph A Frank
  • Jeff W M Bulte
چکیده

R2* mapping has recently been used to detect iron overload in patients with movement disorders. We demonstrate here that this technique can also be used to detect reduced brain iron, as in the case of a missense mutation in the iron-transporting protein divalent metal transporter 1. Surprisingly, we found that the same brain regions are affected (ie, the globus pallidus, substantia nigra, and cerebellar dentate nucleus); this suggests a much more extensive role for these structures in regulating overall brain iron homeostasis. Therefore, for the clinical monitoring of movement disorders for which normal brain iron homeostasis (either overload or reduction) may be implicated, R2* mapping appears to be well-suited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathophysiology of the Belgrade rat

The Belgrade rat is an animal model of divalent metal transporter 1 (DMT1) deficiency. This strain originates from an X-irradiation experiment first reported in 1966. Since then, the Belgrade rat's pathophysiology has helped to reveal the importance of iron balance and the role of DMT1. This review discusses our current understanding of iron transport homeostasis and summarizes molecular detail...

متن کامل

Comparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei

Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...

متن کامل

Olfactory uptake of manganese requires DMT1 and is enhanced by anemia.

Manganese, an essential nutrient, can also elicit toxicity in the central nervous system (CNS). The route of exposure strongly influences the potential neurotoxicity of manganese-containing compounds. Recent studies suggest that inhaled manganese can enter the rat brain through the olfactory system, but little is known about the molecular factors involved. Divalent metal transporter-1 (DMT1) is...

متن کامل

Iron distribution in Belgrade rat reticulocytes after inhibition of heme synthesis with succinylacetone.

We have used succinylacetone (4,6-dioxoheptanoic acid), a specific inhibitor of delta-aminolevulinic acid dehydrase, to gain insight into the defect in iron metabolism in the Belgrade anemia. The Belgrade rat has an inherited microcytic, hypochromic anemia associated with poor iron uptake into developing erythroid cells. Succinylacetone inhibits heme synthesis, leading to nonheme iron accumulat...

متن کامل

Iron metabolism in the Belgrade rat.

Iron metabolism in the Belgrade rat was examined in the intact animal and in the reticulocyte suspensions. The plasma iron turnover was increased. However, when allowance was made for the effect of the elevated plasma iron concentration, erythroid marrow capacity for iron uptake was at basal levels. Numbers of erythroid cells in marrow and spleen measured by the radioiron dilution technique wer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of neurology

دوره 52 1  شماره 

صفحات  -

تاریخ انتشار 2002